В малых дозах стресс полезен
О вредных оксидантах и полезных антиоксидантах наслышаны все. Окислительный стресс, который вызывают активные формы кислорода, связан с механизмом многих заболеваний и, по наиболее популярной теории, служит причиной старения организма. Но оказывается, в малых дозах окислительный стресс полезен, поскольку тренирует организм и помогает справляться с большим стрессом, выяснили сотрудники Калифорнийского университета.
Окислительный стресс вызывают активные формы кислорода, которые вообще-то появляются в организме постоянно как побочные продукты метаболизма с участием кислорода (или аэробного дыхания). Но когда их становится слишком много, а это происходит при действии внешних повреждающих химических или физических агентов (ультрафиолетовая радиация, температура и прочее), они повреждают белки, ДНК, компоненты клеточных мембран. Когда клетки не могут с этим справиться, возникают различные заболевания.
Например, окисление липопротеидов низкой плотности служит причиной повреждения сосудов сердца. Окислительный стресс вносит вклад и в такие возрастные болезни, как паркинсонизм и болезнь Альцгеймера.
Долгое время считалось, что свободные формы кислорода несут исключительно зло, но в последнее время ученые столкнулись с тем, что в малых дозах они полезны. С ними организм получает как бы прививку и лучше справляется с последующими высокими дозами. Однако механизм этого явления оставался неясным.
Профессор биоинженерии и руководитель отдела генетики медицинского факультета Калифорнийского университета в Сан-Диего (Division of Genetics in the Department of Medicine at UC San Diego`s School of Medicine) Трей Айдекер (Trey Ideker), а также его коллега Райан Келли (Ryan Kelley) изучали это явление на дрожжах.
Исследователи подвергли клетки дрожжей действию умеренной дозы перекиси, а вслед за этим - действию высокой дозы. В контрольном эксперименте на клетках испытывали только высокую дозу перекиси водорода без предварительной "тренировки". Перекись водорода - один из важнейших повреждающих агентов при окислительном стрессе. Она легко разлагается на атомарный кислород и воду. В окружении органических молекул атомарный кислород практически моментально рвет первую попавшуюся связь, тем самым разрушая любую подвернувшуюся ему молекулу. И хотя в действительности процесс происходит намного сложнее, суть его от этого не меняется.
Чтобы обнаружить гены, отвечающие за адаптацию, ученые использовали 4831 генетическую линию дрожжей, в каждой из которых не работал какой-то один ген. Работать с таким количеством генетических разновидностей дрожжей ученым помог метод биологических микрочипов, в рамках которого тысячи образцов можно поместить в ячейки на одной плашке и параллельно проанализировать.
После того как клетки подвергали воздействию перекиси водорода, ученые оценивали их количество в пробах. Для определения количества клеток использовали показатель оптической плотности OD600 (если OD600 = 1, то в миллилитре содержится 109 клеток). В эксперименте все культуры выращивали до значения OD600, равного 0,6. Контрольная, необработанная группа дорастала до указанной плотности за 400 минут. Дрожжи, подвергавшиеся обработке высокой дозой, - за 700 минут. А если клетки предварительно тренировали низкой дозой перекиси, они вырастали до указанной плотности за 470 минут. То есть высокая доза замедляла рост клеток (поскольку при обработке погибала почти половина культуры), а предварительная адаптация к низкой дозе значительно снижала этот повреждающий эффект.
Проанализировав результаты во всех мутантных линиях дрожжей, ученые нашли множество генов, которые участвовали в клеточном ответе на высокую дозу перекиси (108 генов) и в адаптации к ней (156 генов). Из них 88 генов работали и там и там.
На следующем этапе ученые стали искать регулирующие факторы, включающие эти гены в случае необходимости. Они нашли три таких фактора - белки YAP1, SKN7 и MGA2, причем два первых ранее уже раньше были кандидатами на устойчивость к окислительному стрессу, а белок MGA2 ранее связывали с устойчивостью к гипоксии.
А затем они показали, что клетки дрожжей, в которых не работает один из этих трех генов - YAP1, SKN7 или MGA2, не могут адаптироваться к перекиси. В этих культурах погибает практически одинаковое число клеток, что без адаптации, что с адаптацией. Наиболее интересен для ученых оказался MGA2, поскольку он включал гены на самой первой стадии адаптации.
Гипотеза адаптации парадокс объясняет. Умеренный окислительный стресс, возникающий при ограничении калорий, приспосабливает организм к последующему действию высокой дозы. То есть когда с возрастом активных форм кислорода становится много, тренированный на малых дозах организм с ними легче справляется.
"Возможно, именно адаптация к окислительному стрессу лежит в основе того, что ограничение калорий продлевает жизнь, - говорит Айдекер. - Этот механизм можно будет применить к моделям болезней и старения".
В будущем ученые собираются проверить полученные данные на высших организмах.